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Gravitation of the Klein-Gordon Scalar Field 
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This paper presents an exact solution of the Einstein-Klein-Gordon equations 
in the static and spherically symmetric case and points out the differences 
between it and Yilmaz's solution. In addition, the essential difference between 
the exact solution and the post-Newtonian approximate solution is also shown. 

1. INTRODUCTION 

Even though the Einstein field equations are highly nonlinear partial 
differential equations, there are numerous exact solutions to them (Kramer 
et al., 1980). These solutions include the well-known spherically symmetric 
solutions of Schwarzschild, Reissner, Tolman, and Friedmann, and the 
axisymmetric solutions of Weyl, Kerr, and Einstein-Rosen, which are of 
great importance in physical applications (Carmeli, 1982). However, the 
analysis of the Einstein-Klein-Gordon (hereafter EKG) equations (the 
Einstein field equations with a nonvanishing energy-momentum tensor 
which arise from the scalar field) has not been put forward as a physical 
problem, although Yilmaz (1958, 1972) obtained some exact solutions in 
his new gravitation theory in which the field equations were similar to the 
EKG equations. Yilmaz's results were not recognized by orthodox theo- 
rists, mainly because of his uncommon theory. In the present paper, I 
consider the EKG equations according to the work of Reissner and 
Nrrdstrom on a spherically symmetric charged body. In Section 2, an exact 
solution for a zero-mass scalar field is obtained in the static and spherically 
symmetric case; the space-time of this solution is asymptotically flat. In 
addition, an approximate solution according to the post-Newtonian 
method in this case is also shown. In Section 3, the physical meaning of 
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Yilmaz's solution is discussed and the differences between his result and 
mine are demonstrated. 

2. BASIC EQUATIONS AND SOLUTION 

Neglecting the cosmological constant, the Einstein equation is gener- 
ally known as 

6~ = ~ r ;  (1) 
v __ v 1 v where G ~ , -  R ~ , - ~ 6 ~ R  is the mixed Einstein tensor, x = 8zcG/c 4 is Ein- 

stein's gravitational constant, and T~ is the energy-momentum tensor. 
In the presence of gravitation, the Klein-Gordon equation takes the 

form 

[ B ~  --1- rnZ(I ) = 0 (2) 

where we choose the natural units G- -h  = c = 1; [] and m denote the 
D'Alembertian operator and the mass of the scalar particle, respectively. 
The corresponding mixed energy-momentum tensor of the scalar field is 
given by (Davis, 1972) 

T~ = g~" ax ~ Ox ~ 2 (~vu gpa OX p aX a m2(i)2 (3) 

where a;  denotes the Kronecker delta. Equations (1)-(3) make up the 
EKG equations. In the simplest spherically symmetric case, the most 
general metric has the form 

dse = guy dxu dx~ = e= dr2 - ee dr2 - r2( do2 -k- sin 2 0 d~ 2) (4) 

where ~ and/~ are functions of the coordinates r and t. 
Considering the static condition, the EKG equations are decomposed 

into the following nonvanishing components: 

G O = - e  - #  - -t- ~-5 = t c T o  = 5 ( m 2 ~ 2  -F e - a ~ , 2 )  

G~ = - e - ~ ( ~ + ~ ) + ~ = x T , = 2  (m2C~2-e-&b'2)  

G 2 = - � 8 9  ~ ~"+  + = x T ~ = x T  ~ 
F 

o m, O-o 

where the prime denotes differentiation by r. 

(5) 

(6) 

(7) 

(8) 

(9) 



Gravitation of the Klein-Gordon Scalar Field 2017 

Using G O _ GI = x ( T  ~ ++_ T[), we can reduce (5 ) - (8 )  to 

e p ~ + 7 =  xm202 

fl' + e "  
r 

(10) 

( l l )  

Equations (9 ) - (11)  are three independent equations of  our problem and 
equation (7) can be deduced from them. 

I f  the mass of  the scalar particle is equal to zero and the fields �9 and 
O' are not, equations (9 ) - (11)  can be simplified to 

0 "  2 0  "2 2 0" 2 2 
0 '  0 ,2 r O' r2 = (rO'O" + 0 '2) (12) 

Or! 
e ~ =  - 1  - r - -  (13) O' 

2 
e = - (i)% 4 e fl ( 1 4 )  

where g is an integral constant. 
Taking a variable quantity transformation X = rO',  we find that 

equation (12) becomes 

X"  2 X  '2 rcXX" 

X X 2 2r 
- -  = 0  ( 1 5 )  

It  is clear that X ' =  0 is a particular solution of the above equation; 
however, it is not reasonable in physics because the corresponding e = and 
e ~ are equal to zero. 

A cumbersome effort yields another exact solution for the nonlinear 
equation (15): 

CI 
X = I'c2 r2 --{-- Kcg-  ,~-Uz ) 1/2 (16) 

where c~, c2 are constant. Hence the corresponding scalar field is 

0 ~ = g r(r 2 + tog2/2) 1/2 (17) 

( )lj2 sinhE( )lj2 ]  18, = ~o - a 
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and the metric is given by 
g 2 c  1 

e ~ = = 1 (19) 

F 2 
e ~ = (20) 

r 2 + K g 2 / 2  

where the mixed constant term is chosen to be unity, as the space- 
time takes the Minkowski form when r --* oe. Obviously, the metric shows 
that the space-time is asymptotically flat and the solution has no 
Schwarzschild term 1/r. Substituting the above solutions into the basic 
equations (7), (9), (10), and (11), we can check their rightness; the answer 
is positive. For comparing the exact solution and the approximate solution, 
we solve the EKG equations according to the post-Newtonian method 
(Will, 1981). First, we extract the energy-momentum tensor by solving the 
KG equation in the Minkowski space-time, then substitute it into the 
Einstein equations to find the first-order modification to the Minkowski 
metric. 

In the static and spherically symmetric Minkowski space-time, the KG 
equation is 

0"  + 2 0 '  - m 2 0  = 0 (21) 
r 

This is a spherical Bessel equation with zero and imaginary quantity On. 

The solution is the linear combination of [sin(imr)]/imr a n d -  [cos(imr)]/ 
imr. With a suitable choice of coefficients, �9 becomes the Yukawa poten- 
tial: 

e - mr  

�9 = g - -  (22) 
r 

where g denotes the strong interaction constant; I choose the same charac- 
ter as in equation (14) because there is a possible relation between the two 
constants (see the following). The corresponding energy-momentum tensor 
is given by 

1 '2 1 2 2 T ~  + ~ m  �9 (23) 

1 t[i), 2 1 2 0 2  TI = ~ + ~ m (24) 

Substituting equations (23) and (24) into equation (1), we obtain the 
first-order metric modification (the process of analysis is exact and has no 
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approximation):  

e -~ 1 2M g2 e-2mr 
= - - - + K ( l + m r )  (25) 

r 2r 2 

= - - +  +~c m +  (26)  

where M is an integral constant and can be defined as the mass of  a 
gravitating body at the original point. When m = 0 and g r 0, the integral 
is, for M 2 > tcg2/2, 

e" = (r--  MM--(M2--~g2/2)II2~M/(M2-'g2/2)mT (M 2 --  ~g2/2)  ,121 (27) 

for M 2 < tcg2/2, 

and for M 2 =  1r 

2M r - M 
(~ :g2/2  _ M 2) 1/2 arctg 0 r  _ M2 ) 1/2 (28) 

2M 
= - - -  (29) 

r - m  

2M Kg 2 
e - '  = 1 - -  + -  (30) 

r 2r 2 

The metric shows a Schwarzschild term 2M/r and is the Schwarzschild 
metric when m and g are equal to zero, and interestingly, when m and M 
are equal to zero the integral of  equation (24) leads to e ~ =  1 and the 
metric is the exact solution we obtain, which is why the integral constant in 
equation (14) is denoted by the strong interaction constant g. The essential 
difference between the exact solution and the approximate one raises the 
question of  the rightness of  the post-Newtonian method, which has been 
widely used in the weak gravitational field. 

3. SCALAR FIELD AND DISCUSSION 

The coupling interaction of the scalar field and gravitation appears in 
the form of  E K G  equations according to the traditional Einstein theory; a 
similar form exists also in some uncommon theories of  gravitation, such as 
Yilmaz's new gravitational theory, Hoyle 's  creation field theory (Narlikar,  
1985), and Yu's  (1989) geometric creation theory. The general form of the 
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equations of these theories can be written as 

1 1 
- = + - ( 3 1 )  

[ ~  = f ( ~ )  (32) 

where a is a constant (negative for creation field, K for EK G  theory), and 
g(~) and f ( ~ )  are functions of the scalar field. In the case of f ( ~ )  = 0, 
g(~)  = 0, and Tuv = 0, the above equations are different from the E K G  
equations only by a constant coefficient. Yilmaz solved an equation of 
E KG form in the static and spherically symmetric case and found an exact 
solution (an isotropic metric): 

ds 2 = e -2m/p d t  2 _ e2m/p[dp2 .]_ pa (d02  q_ sin 2 0 dq~2)] (33) 

= + i  -- (34) 
P 

where i denotes the complex operator, and m is explained by Yilmaz as the 
total mass producing the gravitational field (hence m is a real positive 
number and scalar curvature has no singularity at p = 0); here we consider 
it as a constant of the scalar field (hence m may be an imaginary number). 

We can see that the metric is approximately the Schwarzschild form 
when m / r  ~ 1. After checking its rightness in isotropic coordinates, we 
perform a coordinate transformation by using a superfunction: 

p e  m/p = r (35) 

Then the line element takes the form of equation (2). Equation (15) must 
contain this solution, and gives 

2 2 . tog ,, 
m + ~ - - =  u (36) 

The related metric is 

e ~ = e--2m/p (37) 

e/~ _ p2  
p2 m 2 (38) 

m must be an imaginary number because ~: and g are real positive numbers; 
hence the space-time of Yilmaz's solution is oscillatory. The two solutions 
are definitely not equal, but the two metrics are equal at a series of 
quantum r values 

r = im/nT~ = (~:/2) l /2g/nrc (39) 
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where n is a positive integer. It seems that the exact solution we obtain is 
a flat one corresponding to Yilmaz's solution, just as the Minkowski 
solution is a flat one corresponding to the Schwarzschild solution. The 
difference of  the two exact solutions can be also shown by comparing the 
scalar curvatures given by them. The scalar curvature of the isotropic 
metric is (2mZ/p4)e--2m/p and the other is - t c g 2 / r  4 or (2m2/p4)e-4m/C Only 
one of  the scalar curvatures has a singularity at r = 0 and the two metrics 
cannot be made equal by any coordinate transformation. 
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